Email Home Page |
|
A DC power supply is used in place of a 12 volt battery when you need to operate car audio equipment and the only source of power is the mains voltage (AC wall outlet). This type of power supply is similar to a battery charger but has much better 'manners'. A battery charger is generally unregulated. Some high current battery chargers will produce up to 17 volts as the battery reaches it fully charged state. The regulated DC power supplies will not go above their regulated voltage. The regulated DC power supply should not be connected to a dead battery. Since it is designed to maintain a constant output voltage, it will instantly try to bring the battery's voltage up to its regulated voltage and may blow its internal fuses or be damaged (depending on its design). A good DC power supply will not cause a hum like a battery charger will (which is important when you want to listen to your system for extended periods of time or when tweaking your system).
Linear DC power supplies:
Switching DC power supplies:
For those who want to use a car audio amplifier in their home...
Using all car audio equipment:
----- Critically Important -----
Adobe has deemed that the Flash content on web pages is too risky to be used by the general internet user. For virtually all modern browsers, support for Flash was eliminated on 1-1-2021. This means that those browsers will not display any of the interactive Flash demos/calculators/graphics on this (or any other) site.
The simplest (not the best) fix, for now, is to download the Ruffle extension for your browser. It will render the Flash files where they were previously blocked. In some browsers, you will have to click on the big 'play' button to make the Flash applets/graphics visible. An alternative to Ruffle for viewing Flash content is to use an alternative browser like the older, portable version of Chrome (chromium), an older version of Safari for Windows or one of several other browsers. More information on Flash capable browsers can be found HERE. It's not quite as simple as Ruffle but anyone even moderately familiar with the Windows Control Panel and installation of software can use Flash as it was intended.
Click HERE to make this applet fill this window.
Either of the next two will work with your MP3 player. Instead of connecting the home receiver to the amplifier, you would connect the output of your MP3 player to the amp using a cable to adapt the MP3 player's headphone jack to the amplifier.
Driving a car audio amplifier from a home receiver (example #1): If you want to use a home receiver with your mobile amplifier and you're lucky enough to have a receiver with a set of preamp output and main amplifier input jacks, you would connect your system as shown in the following diagram. The level of the audio from the preamp output jacks are controlled by the volume control. You may have to connect the power supply's ground to the ground screw on the back of your receiver to prevent/reduce AC hum. If you only want to use your external amplifier for bass and want to continue using the receiver's internal amplifier to driver other speakers, you will have to use Y-cables to split the signal. In the image below, the bars connecting the preamp output and main input jacks are simply what's used to connect the preamp output signal to the receiver's internal amplifier.
Click HERE to make this applet fill this window.
Driving a car audio amplifier from a home receiver (example #2):
Click HERE to make this applet fill this window.
Note:
This calculator was originally designed to calculate voltage drop in power wire. If there's anything you don't understand about the data generated, refer to the wire page.
Note: If there was a warning of too few circular mils in the calculator above, the wire that you've chosen may have problems with overheating at full power. You will get this warning when you punch in the numbers for something like a short piece of 8g wire to go between the distribution block and the amplifier. Some people use a single strand of 8g wire to make the connection between the dblock and an 800 or 1000 watt amp. Even though the voltage drop in that short piece of wire may not be significant, the power dissipation may be significant. The value of 300 circular mils per amp of current is somewhat arbitrary and may lead to some arguments but it is a safe value. I originally used the power dissipation per foot as the reference for the warning but it didn't hold for all wire sizes. Larger wires have more surface area and can dissipate more power per foot. |
|